Numerical Linear Algebra Methods in Recurrent Neural Networks

Qiang Ye (Joint works with Kyle Helfrich, Gayan Maduranga, Devin Willmott)

University of Kentucky

July 16, 2020 - S.T. Yau Center, Southeast University

1 Neural Networks for Supervised Learning

- 2 Recurrent Neural Network (RNN)
- 3 scaled Cayley Orthogonal RNN (scoRNN)
- 4 Eigenvalue Normalized RNN (ENRNN)

5 Experiments

Supervised Learning

Given a labeled data set $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N \subset \mathbf{R}^m \times \mathbf{R}^n$, fit a parametric family of functions $f : (\mathbf{x}, \theta) \in \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}^n$ to the data;

Supervised Learning

Given a labeled data set $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N \subset \mathbf{R}^m \times \mathbf{R}^n$, fit a parametric family of functions $f : (\mathbf{x}, \theta) \in \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}^n$ to the data;

- Choose $f(x, \theta)$
- Choose a loss function $\mathcal{L}(\theta) = \sum_{i=1}^{N} L(f(x_i, \theta), y_i)$
- find $\theta \in \mathbf{R}^{\rho}$ by minimizing $\mathcal{L}(\theta)$

Supervised Learning

Given a labeled data set $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N \subset \mathbf{R}^m \times \mathbf{R}^n$, fit a parametric family of functions $f : (\mathbf{x}, \theta) \in \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}^n$ to the data;

- Choose $f(x, \theta)$
- Choose a loss function $\mathcal{L}(\theta) = \sum_{i=1}^{N} L(f(x_i, \theta), y_i)$
- find $heta \in \mathbf{R}^{
 ho}$ by minimizing $\mathcal{L}(heta)$

Example. Linear regression:

1.
$$f(x, \theta) = Wx + b$$
 with $\theta = [W, b]$
2. $\mathcal{L}(\theta) = \sum_{i=1}^{N} ||f(x_i, \theta) - y_i||^2$

Deep Neural Network

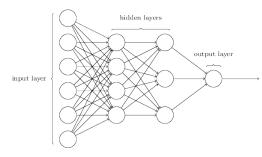


Image source: Goodfellow, et al.

• Composition of *L* functions:

 $f(\mathbf{x}, \theta) = f^{(3)}(f^{(2)}(f^{(1)}(\mathbf{x})))$

- hidden variables at ℓ -th layer: $\begin{aligned} h^{(\ell)} &= f^{(\ell)}(h^{(\ell-1)}) \\ &:= \sigma(W^{(\ell)}h^{(\ell-1)} + b^{(\ell)}) \end{aligned}$
- σ(t): an elementwise nonlinear activation function:
 - Rectified linear unit (ReLu) $\sigma(t) = \max\{t, 0\}$
 - Logistic sigmoid
 - $\sigma(t) = 1/(1 + e^{-t})$
 - Tanh $\sigma(t) = \tanh(t)$

For the model output $\hat{y}_i := f(x_i, \theta)$, use loss $\mathcal{L}(\theta)$:

• Regression problem: MSE

$$\mathcal{L}(heta) = \sum_i \|\hat{y}_i - y_i\|^2$$

• Classification problem: Cross-Entropy

$$\mathcal{L}(heta) = -\sum_{i}\sum_{j}y_{j}^{(i)}\log(\hat{y}_{j}^{(i)})$$

Gradient descent:

$$\theta \leftarrow \theta - \lambda \nabla \mathcal{L}(\theta)$$

- $\lambda > 0$ learning rate
- Mini-batch training;
- Back-propagation algorithm
- Accelerations: SGD with momentum, Adams, RMSPROP, Batch normalization, ...

 $abla \mathcal{L}(heta) pprox 0$ for heta in some large regions not near local minimum.

- Logistic sigmoid and tanh: $\sigma'(t) \approx 0$ for most t;
- ReLU: $\sigma'(t) = 0$ for t < 0
- Choice of $\mathcal{L}(\theta)$
- initialization
- depth of the network: multiplications of L weight matrices

Recurrent Neural Network (RNN)

Sequential data $\mathbf{x} = (\mathbf{x}^{(t)})_{t=1}^{\tau}$.

- Language Processing
- Audio and Video Files

Sequential data $\mathbf{x} = (\mathbf{x}^{(t)})_{t=1}^{\tau}$.

- Language Processing
- Audio and Video Files

Difficulties with feedforward network models:

- high dimensional inputs
- variable sequence length

State-space model of input-output systems:

$$\mathbf{h}^{(t)} = \sigma \left(\mathbf{U}^{T} \mathbf{x}^{(t)} + \mathbf{W}^{T} \mathbf{h}^{(t-1)} + \mathbf{b} \right)$$
$$\mathbf{o}^{(t)} = \mathbf{V}^{T} \mathbf{h}^{(t)} + \mathbf{c}$$

• Input:
$$\mathbf{x} = (\mathbf{x}^{(t)})_{t=1}^{ au}$$
 with $\mathbf{x}^{(t)} \in \mathbb{R}^m$

• Output:
$$\mathbf{o} = (\mathbf{o}^{(t)})_{t=1}^{ au}$$
 with $\mathbf{o}^{(t)} \in \mathbb{R}^p$

• State
$$\mathbf{h} = (\mathbf{h}^{(t)})_{t=1}^{\tau}$$
 with $\mathbf{h}^{(t)} \in \mathbb{R}^m$

•
$$\mathcal{L}(\theta) = \sum_{i} L(\mathbf{o}_{i}^{(t)}, \mathbf{y}_{i}^{(t)})$$

• Often output at τ only: $\mathbf{o} = \mathbf{V}^T \mathbf{h}^{(\tau)} + \mathbf{c}$

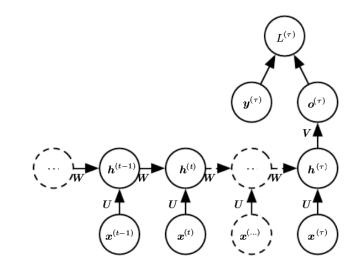


Image source: Goodfellow, et al.

Backpropagation Through Time

$$\frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(t)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(t+1)}} \frac{\partial \mathbf{h}^{(t+1)}}{\partial \mathbf{h}^{(t)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(t+1)}} \mathbf{D}^{(t)} \mathbf{W}^{\mathsf{T}}$$

where $\mathbf{D}^{(t)} = diag \left(\sigma' \left(\mathbf{U}^{\mathsf{T}} \mathbf{x}^{(t)} + \mathbf{W}^{\mathsf{T}} \mathbf{h}^{(t-1)} + \mathbf{b} \right) \right)$

Backpropagation Through Time

$$\frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(t)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(t+1)}} \frac{\partial \mathbf{h}^{(t+1)}}{\partial \mathbf{h}^{(t)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(t+1)}} \mathbf{D}^{(t)} \mathbf{W}^{T}$$

where $\mathbf{D}^{(t)} = diag \left(\sigma' \left(\mathbf{U}^{T} \mathbf{x}^{(t)} + \mathbf{W}^{T} \mathbf{h}^{(t-1)} + \mathbf{b} \right) \right)$

•
$$0 \le \sigma'(t) \le 1$$
 and $\|\mathbf{D}^{(k)}\| \le 1$.

• Vanishing (if $\|W\| < 1$) or exploding (if $\|W\| > 1$) gradients:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(t)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(\tau)}}^{T} \left(\prod_{k=\tau}^{t+1} \mathbf{D}^{(k)} \mathbf{W}^{T} \right)$$

Backpropagation Through Time

$$\frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(t)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(t+1)}} \frac{\partial \mathbf{h}^{(t+1)}}{\partial \mathbf{h}^{(t)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(t+1)}} \mathbf{D}^{(t)} \mathbf{W}^{T}$$

where $\mathbf{D}^{(t)} = diag \left(\sigma' \left(\mathbf{U}^{T} \mathbf{x}^{(t)} + \mathbf{W}^{T} \mathbf{h}^{(t-1)} + \mathbf{b} \right) \right)$
• $0 \le \sigma'(t) \le 1$ and $\|\mathbf{D}^{(k)}\| \le 1$.
• Vanishing (if $\|W\| < 1$) or exploding (if $\|W\| > 1$) gradients:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(t)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(\tau)}}^{T} \left(\prod_{k=\tau}^{t+1} \mathbf{D}^{(k)} \mathbf{W}^{T} \right)$$

• For $t \ll au$, $\mathbf{h}^{(t)}$ or $\mathbf{x}^{(t)}$ has little effect on \mathcal{L} or $\mathbf{o}^{(au)}$

Long Short Term Memory (LSTM) Network

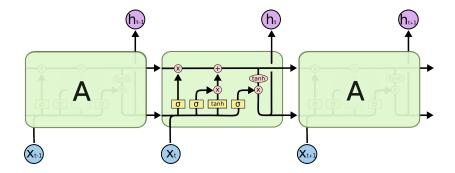


Image source: Colah's blog

- Most popular architecture of RNN
- Complicated network
- a large number of trainable parameters
- Other variants: Gated Recurrent Units (GRUs)

Unitary RNN (uRNN)

Use unitary or orthogonal W in RNN:

Taking 2-norms

$$\left\| \frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(t)}} \right\| \leq \left\| \frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(\tau)}} \right\| \prod_{k=t+1}^{\tau} \left\| \mathbf{D}^{(k)} \right\| \| \mathbf{W} \|$$
$$\leq \left\| \frac{\partial \mathcal{L}}{\partial \mathbf{h}^{(\tau)}} \right\|$$

- How to construct *W*?
- Early attempts: initialize W to be orthogonal

Arjovsky, et al. (2016)

• Use a special unitary matrix:

$\textbf{W} \hspace{.1in} = \hspace{.1in} \textbf{D}_3 \textbf{R}_2 \mathcal{F}^{-1} \textbf{D}_2 \textbf{\Pi} \textbf{R}_1 \mathcal{F} \textbf{D}_1$

- \mathbf{D}_k diagonal matrix with entries $\mathbf{D}_{j,j}=e^{iw_j}$ and $w_j\in\mathbb{R}$ (trainable)
- $\mathbf{R} = \mathbf{I} 2 \frac{\mathbf{v} \mathbf{v}^*}{\|\mathbf{v}\|^2}$ Householder reflection matrices (trainable $\mathbf{v} \in \mathbb{C}^n$)
- $\boldsymbol{\Pi}$ fixed random permutation matrix
- $\bullet~\mathcal{F},~\mathcal{F}^{-1}$ Discrete Fourier and inverse Fourier transforms
- Requres 7*n* in memory storage.

• New activation function:

$$\sigma_{\mathsf{modReLU}}(z) = \begin{cases} (|z|+b)\frac{z}{|z|} & \text{if } |z|+b \ge 0\\ 0 & \text{if } |z|+b < 0 \end{cases}$$

- $\sigma_{\text{modReLU}(z)} = \sigma_{ReLU}(|z| + b) \frac{z}{|z|}$
- Unlike ReLU, for the real case it can have postive and negative activation values.

Full-Capacity uRNN

Wisdom, et al. (2016)

- Find W from Stiefel Manifold $\mathcal{V}_p(\mathbb{C}^n) = \{\mathbf{X} \in \mathbb{C}^{n \times p} | \mathbf{X}^* \mathbf{X} = \mathbf{I}\}$
- Optimize $\min_{W^*W=I} \mathcal{L}(W)$;
- Updates W by moving along a descent curve on $\mathcal{V}_p(\mathbb{C}^n)$ by Wen and Yin (2013):

$$\mathbf{W}^{(k+1)} = \left(\mathbf{I} + \frac{\lambda}{2}\mathbf{A}^{(k)}\right)^{-1} \left(\mathbf{I} - \frac{\lambda}{2}\mathbf{A}^{(k)}\right) \mathbf{W}^{(k)}$$

• λ is the learning rate

- The descent curve not necessarily in the steepest descent direction.
- Loss of orthogonality due to repeated matrix multiplications.

oRNN: construct W by Householder reflections euRNN: construct W by Givens rotations

- Long product $W = H_1 H_2 \cdots H_m$ nonlinearity
- More complicated learning algorithm
- Implemented with small m

oRNN: construct W by Householder reflections euRNN: construct W by Givens rotations

- Long product $W = H_1 H_2 \cdots H_m$ nonlinearity
- More complicated learning algorithm
- Implemented with small m

expRNN: construct W through exponential of skew-symmetric matrix

• W = exp(K)

Scaled Cayley Orthogonal RNN (scoRNN)

Every real orthogonal matrix \mathbf{W} that does not have -1 as an eigenvalue can be expressed as:

$$\mathsf{W} = \left(\mathsf{I} + \mathsf{A}
ight)^{-1}\left(\mathsf{I} - \mathsf{A}
ight)$$

where

$$\mathbf{A} = (\mathbf{I} + \mathbf{W})^{-1} \left(\mathbf{I} - \mathbf{W} \right)$$

is skew-symmetric.

• Unstable when an eigenvalue of ${f W}$ is close to -1

Theorem 1 (Kahan, O'Dorney)

Every orthogonal $\mathbf{W} \in \mathcal{V}_n(\mathbb{R}^n)$ can be expressed as

$$\mathbf{W} = (\mathbf{I} + \mathbf{A})^{-1} (\mathbf{I} - \mathbf{A}) \mathbf{D}$$

where $\mathbf{A} = [a_{ij}]$ is real, skew-symmetric with $|a_{ij}| \le 1$, and \mathbf{D} is diagonal with all entries equal to ± 1 .

Every unitary $\mathbf{W} \in \mathcal{V}_n(\mathbb{C}^n)$ can be expressed as

$$\mathsf{W} = (\mathsf{I} + \mathsf{A})^{-1} (\mathsf{I} - \mathsf{A}) \mathsf{D}$$

where $\mathbf{A} = [a_{ij}]$ is skew-Hermitian with $|a_{ij}| \le 1$, and $\mathbf{D} = \text{diag}\{e^{i\theta_1}\cdots, e^{i\theta_n}\}.$

Theorem 1 (Kahan, O'Dorney)

Every orthogonal $\mathbf{W} \in \mathcal{V}_n(\mathbb{R}^n)$ can be expressed as

$$\mathbf{W} = (\mathbf{I} + \mathbf{A})^{-1} (\mathbf{I} - \mathbf{A}) \mathbf{D}$$

where $\mathbf{A} = [a_{ij}]$ is real, skew-symmetric with $|a_{ij}| \le 1$, and \mathbf{D} is diagonal with all entries equal to ± 1 .

Every unitary $\mathbf{W} \in \mathcal{V}_n(\mathbb{C}^n)$ can be expressed as

$$\mathsf{W} = (\mathsf{I} + \mathsf{A})^{-1}(\mathsf{I} - \mathsf{A})\mathsf{D}$$

where $\mathbf{A} = [a_{ij}]$ is skew-Hermitian with $|a_{ij}| \leq 1$, and $\mathbf{D} = \text{diag}\{e^{i\theta_1}\cdots, e^{i\theta_n}\}.$

- In practice, only need |a_{ij}| bounded
- Achieved by many D

• Similar to a standard RNN:

$$\mathbf{z}^{(t)} = \mathbf{U}^T \mathbf{x}^{(t)} + \mathbf{W}^T \mathbf{h}^{(t-1)}$$
$$\mathbf{h}^{(t)} = \sigma_{\text{modReLU}}(\mathbf{z}^{(t)})$$

- $\mathbf{W} = (\mathbf{I} + \mathbf{A})^{-1} (\mathbf{I} \mathbf{A}) \mathbf{D}$ where \mathbf{D} has ρ diagonals being -1.
- ρ is a hyperparameter;
- The entries of **A** are the trainable parameters.

Theorem 2

Let $\mathcal{L} = \mathcal{L}(W) : \mathbb{R}^{n \times n} \to \mathbb{R}$ be some loss function for an RNN and $\mathbf{W} = \mathbf{W}(\mathbf{A}) := (\mathbf{I} + \mathbf{A})^{-1} (\mathbf{I} - \mathbf{A}) \mathbf{D}$ Then $\frac{\partial \mathcal{L}}{\partial \mathbf{A}} = \mathbf{V}^T - \mathbf{V}$ (1) where $\mathbf{V} := (\mathbf{I} - \mathbf{A})^{-1} \frac{\partial \mathcal{L}}{\partial \mathbf{W}} (\mathbf{D} + \mathbf{W}^T)$,

Theorem 2

Let $\mathcal{L} = \mathcal{L}(W) : \mathbb{R}^{n \times n} \to \mathbb{R}$ be some loss function for an RNN and $\mathbf{W} = \mathbf{W}(\mathbf{A}) := (\mathbf{I} + \mathbf{A})^{-1} (\mathbf{I} - \mathbf{A}) \mathbf{D}$ Then $\frac{\partial \mathcal{L}}{\partial \mathbf{A}} = \mathbf{V}^T - \mathbf{V}$ (1) where $\mathbf{V} := (\mathbf{I} - \mathbf{A})^{-1} \frac{\partial \mathcal{L}}{\partial \mathbf{W}} (\mathbf{D} + \mathbf{W}^T)$,

Update A:

$$A^{(k+1)} = A^{(k)} - \lambda \frac{\partial \mathcal{L}}{\partial A}$$

Real case: discrete D determined by ρ (number of -1 in D)

• ρ needs to be tuned.

Complex case: continuous $\mathbf{D} = \text{diag}\{e^{i\theta_1}\cdots, e^{i\theta_n}\}$

• optimize θ_i through gradient descent

Training of D

Scaled Cayley Unitary RNN (scuRNN): train $\mathbf{D} = \text{diag}\{e^{i\theta_1}\cdots, e^{i\theta_n}\}$ by optimizing with respect to $\theta = [\theta_1, \cdots, \theta_n]$.

Theorem 3

Let $\mathcal{L} = \mathcal{L}(W) : \mathbb{C}^{n \times n} \to \mathbb{R}$ be some differentiable loss function for an RNN with the recurrent weight matrix $\mathbf{W} = \mathbf{W}(\mathbf{A}, D) := (\mathbf{I} + \mathbf{A})^{-1} (\mathbf{I} - \mathbf{A}) \mathbf{D}$. Then the gradient of L = L(W(A, D)) with respect to $\theta = [\theta_1, \cdots, \theta_n]$ is

$$\frac{\partial L}{\partial \theta} = 2Re\left(i\left(\left(\frac{\partial L}{\partial W}^{T}Z\right)\odot I\right)d\right),$$

where $d = \left[e^{i\theta_1}, e^{i\theta_2, \dots e^{i\theta_n}}\right]^T$

Training of D

Scaled Cayley Unitary RNN (scuRNN): train $\mathbf{D} = \text{diag}\{e^{i\theta_1}\cdots, e^{i\theta_n}\}$ by optimizing with respect to $\theta = [\theta_1, \cdots, \theta_n]$.

Theorem 3

Let $\mathcal{L} = \mathcal{L}(W) : \mathbb{C}^{n \times n} \to \mathbb{R}$ be some differentiable loss function for an RNN with the recurrent weight matrix $\mathbf{W} = \mathbf{W}(\mathbf{A}, D) := (\mathbf{I} + \mathbf{A})^{-1} (\mathbf{I} - \mathbf{A}) \mathbf{D}$. Then the gradient of L = L(W(A, D)) with respect to $\theta = [\theta_1, \dots, \theta_n]$ is

$$\frac{\partial L}{\partial \theta} = 2Re\left(i\left(\left(\frac{\partial L}{\partial W}^{T}Z\right)\odot I\right)d\right),$$

where $d = \left[e^{i\theta_1}, e^{i\theta_2, \dots e^{i\theta_n}}\right]^T$

$$\theta^{(k+1)} = \theta^{(k)} - \lambda \frac{\partial \mathcal{L}}{\partial \theta}$$

Eigenvalue Normalized RNN (ENRNN)

- $\bullet~{\rm Orthogonal}/{\rm Unitary~RNNs} \to {\rm Long~term~dependency:}$
 - Unable to "forget" short term information
 - Reduces capacity

- Orthogonal/Unitary RNNs \rightarrow Long term dependency:
 - Unable to "forget" short term information
 - Reduces capacity
- ENRNN:
 - Two states: Long term memory and short-term memory
 - Short-term memory state: Use W with ho(W) < 1

• Version 1:

$$\begin{cases} h_t^{(L)} = \sigma \left(U^{(L)} x_t + W^{(L)} h_{t-1}^{(L)} + b^{(L)} \right) \\ h_t^{(S)} = \sigma \left(U^{(S)} x_t + W^{(S)} h_{t-1}^{(S)} + b^{(S)} \right) \\ y_t = V^{(L)} h_t^{(L)} + V^{(S)} h_t^{(S)} + c \\ \end{cases}$$
$$W = \left[\frac{W^{(L)}}{W^{(S)}} \right]$$

- $W^{(L)}$ is orthogonal/unitary
- $\rho(W^{(S)}) < 1$

(2)

• Version 2:

$$\begin{cases} h_{t}^{(L)} = \sigma \left(U^{(L)} x_{t} + W^{(L)} h_{t-1}^{(L)} + W^{(C)} h_{t-1}^{(S)} + b^{(L)} \right) \\ h_{t}^{(S)} = \sigma \left(U^{(S)} x_{t} + W^{(S)} h_{t-1}^{(S)} + b^{(S)} \right) \\ y_{t} = V^{(L)} h_{t}^{(L)} + V^{(S)} h_{t}^{(S)} + c \end{cases}$$

$$W = \left[\frac{W^{(L)} | W^{(C)} | }{| W^{(S)} | } \right]$$
(3)

- $W^{(L)}$ is orthogonal/unitary
- $\rho(W^{(S)}) < 1$

Theorem 4

With the ReLU nonlinearity, if $\|W^{(S)}\|_2 < 1$ then

$$\left\|\frac{\partial h_{t+\tau}^{(S)}}{\partial h_{t}^{(S)}}\right\| \leq \left\|W^{(S)}\right\|^{\tau} \text{ and } \left\|\frac{\partial h_{t+\tau}^{(S)}}{\partial x_{t}}\right\| \leq \left\|W^{(S)}\right\|^{\tau} \left\|U^{(S)}\right\|$$

Construction of $W^{(S)}$:

• Parameterize $W^{(S)}$ by T as

$$W^{(S)} = W^{(S)}(T) := \frac{T}{\rho(T) + \epsilon}$$

Construction of $W^{(S)}$:

• Parameterize $W^{(S)}$ by T as

$$W^{(S)} = W^{(S)}(T) := \frac{T}{\rho(T) + \epsilon}$$

• Gradient descent in T.

Theorem 5

Let $L = L(W) : \mathbb{R}^{m \times m} \to \mathbb{R}$ be some loss function for an RNN and let $\frac{\partial L}{\partial W} := \begin{bmatrix} \frac{\partial L}{\partial W_{i,j}} \end{bmatrix} \in \mathbb{R}^{m \times m}$. Let W be parameterized as $W = \frac{T}{\rho(T) + \epsilon}$. If $\lambda = \alpha + i\beta$ is a simple eigenvalue of T with $|\lambda| = \rho(T)$ and if $Tu = \lambda u$ and $v^*T = \lambda v^*$, then

$$\frac{\partial L}{\partial T} = \frac{1}{\tilde{\rho}(T)} \left[\frac{\partial L}{\partial W} - \frac{1}{\tilde{\rho}(T)} \mathbf{1}_{m}^{T} \left(\frac{\partial L}{\partial W} \odot W \right) \mathbf{1}_{m} C \right]$$

where $C = \alpha \operatorname{Re}(S) + \beta \operatorname{Im}(S)$ with $S = \frac{\overline{\nabla} u^T}{v^* u} \in \mathbb{C}^{m \times m}$, $1_m \in \mathbb{R}^m$ is a vector consisting of all ones, $\tilde{\rho}(T) = \rho(T)^{+} \epsilon$.

- Selecting λ or $\overline{\lambda}$ results in same derivative due to conjugation.
- Repeat eigenvalues unlikely.
- Begin normalization once ho(W) > 1

Gradient Analysis

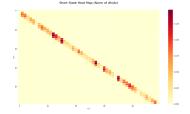
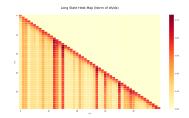
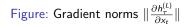


Figure: Gradient norms $\left\|\frac{\partial h_{\tau}^{(S)}}{\partial x_{t}}\right\|$





Experiments

0.58	0.23	0.84	0.06	0.71		0.22	0.63	0.14	0.97
0	0	1	0	0	0	1	0	0	0

Figure: The goal of the machine is to output the sum of the entries marked by one, in this case 0.84+0.22 = 1.06

• Two sequences concurrently, each length T

- First sequence: $\mathcal{U}[0,1)$
- Second sequence: All zeros except a 1 located uniformly in $[1, \frac{T}{2})$ and a second 1 uniformly in $[\frac{T}{2}, T)$
- Goal: Sum the two entries marked by 1s

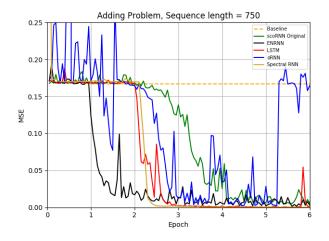


Figure: Test set MSE on the adding problem.

- Sequence length: T + 20
- First ten uniformly sampled from 1-8
- Marker 9 placed ten timesteps from the end
- All other entries 0
- Goal: Output zeros until the 9 then output the first ten elements from the beginning of the sequence.

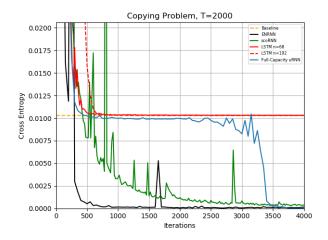


Figure: Cross entropy of each machine on the copying problem.

- TIMIT dataset 3,696 training, 400 validation, and 192 testing speech recordings.
- Goal: Predict log-magnitudes of the Fourier amplitudes at frame t + 1.

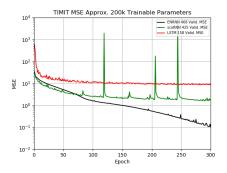


Figure: Validation set MSE for TIMIT

Table: TIMIT: Best validation MSE after 300 epochs

Model	n	#Params	Valid. MSE	Test. MSE
ENRNN	374/94	pprox 200k	0.13	0.13
scoRNN	425	pprox 200k	1.56	1.52
LSTM	158	pprox 200k	8.53	8.27
LSTM	468	pprox 1200k	5.60	5.42
Model	N	SegSNR (dB)	STOI	PESQ
ENRNN	374/94	4.84	0.83	2.75
scoRNN	425	4.55	0.82	2.72
LSTM	158	4.00	0.79	2.51
LSTM	468	4.82	0.81	2.75

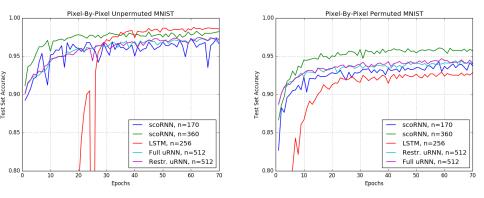
- Character PTB dataset 10k words, 50 characters
- 5102k training, 400k validation, 450k testing characters
- Goal: Predict next character in the sequence

Table: Best testing MSE in BPC after 20 epochs.

Model	n	# Param	Valid. BPC	Test BPC
ENRNN	310/720	pprox 1016k	1.475	1.429
LSTM	350	pprox 1016k	1.506	1.461
GRU	415	-	-	1.601*
EURNN	2048	-	-	1.715*
GORU	512	-	-	1.623*
oRNN	512	pprox 183k	1.73**	1.68**
nnRNN	1024	pprox 1320k	-	1.47***
LSTM	1030	pprox 8600k	1.447	1.408

- Goal: Classify 28x28 pixel images of handwritten digits (0-9)
- Pixel fed into RNN sequentially single pixel sequence length of 784
- Unpermuted and fixed permutation
- 55,000 training images and 10,000 testing images

Model	n	# parameters	MNIST Test Accuracy	Permuted MNIST Test Accuracy
scoRNN	170	pprox 16k	0.973	0.943
scoRNN	360	pprox 69k	0.983	0.962
LSTM	128	pprox 68k	0.987	0.920
LSTM	256	pprox 270k	0.989	0.929
Restricted-capacity uRNN	512	pprox 16k	0.976	0.945
Full-capacity uRNN	116	pprox 16 k	0.947	0.925
Full-capacity uRNN	512	pprox 270k	0.974	0.947



Concluding Remarks

- Some difficulties in deep learning pertain to numerical issues
- Robust parametrization improves performance
- \bullet Orthogonal RNNs \rightarrow accumulation of long term memory
- $\bullet~{\rm enRNN}$ \rightarrow short term memory

References:

- K. Helfrich and D. Willmott and Q. Ye, Orthogonal Recurrent Neural Networks with Scaled Cayley Transform, ICML 2018.
- K.D. Maduranga, K. Helfrich, and Q. Ye, Complex Unitary Recurrent Neural Networks using Scaled Cayley Transform, AAAI 2019.
- S. Helfrich and Q. Ye, Eigenvalue Normalized Recurrent Neural Networks for Short Term Memory, AAAI 2020.

The End